Optimizing Electric Vehicle Charging with Moth Flame Control Algorithm of Boost-KY Converter

Author:

Gadekar Santosh Dinkar,Murali M.

Abstract

Electric vehicles have assumed a prominent role in future transport system due to the diminishing availability and escalating costs of fossil fuels, coupled with growing concerns about the impact of global warming. The purpose of the work consists in addressing the pressing need for efficient and sustainable solutions in the realm of electric vehicles and renewable energy integration. The tasks solved in the article to achieve the given goal are the following: an improved Boost-KY converter has been introduced to counter the inherent limitation of low PV panel voltage output. This converter effectively mitigates voltage and current ripples, thereby ensuring a stable power supply for EV charging. Additionally, the Moth Flame Optimized Proportional Integral (MFO-PI) controller has been implemented to regulate converter operation, demonstrating exceptional proficiency in mitigating PV output unpredictability. MATLAB simulation is done to validate the proposed system's performance. The most important results are the achievement of impressive maximum efficiency of 96.21% and remarkably low Total Harmonic Distortion (THD) value of 1.04%. The system maintains consistent voltage and current levels for PV panels and EV battery, ensuring dependable energy supply. The significance of the results obtained consists in their potential to revolutionize the intersection of renewable energy integration, electric vehicle (EV) adoption, and sustainable transportation practices.The PV-based EV charging system not only reduces dependence on finite fossil fuel resources but also contributes to environmental preservation, aligning with global efforts to combat climate change. Furthermore, system adheres to stringent requirements of IEEE 519 standards, positioning it as a catalyst for the adoption of clean energy solutions within the future transport system. Keywords: PV system, electric vehicle, improved Boost-KY converter, Moth Flame optimized PI controller.

Publisher

Technical University of Moldova

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3