The Energy-Saving Control Criterion for Impact Crushing Machines

Author:

Chausov Sergiy,Sabo Andrii,Popova Iryna,Budko Vasily

Abstract

The purpose of the article is to substantiate the use of a new criterion for controlling the grinding technological process to improve the use of electrical energy. The subject of the study is the process of using electrical energy in impact grinding machines. The set goal is achieved by solving the following problems: analyzing the energy of the grinding process, determining the parameters of raw materials and operating modes of the electric drive that affect the efficiency of electrical energy usage. Based on theoretical research, a mathematical model of energy consumption in grinding processes has been developed. Analytical studies of the resulting mathematical model showed the nonlinear extreme nature of the specific energy consumption of the grinding process with changing raw material parameters and operating modes. This creates the prerequisites both for using specific electrical energy costs as a control criterion and for the use a controlled electric drive to achieve maximum energy savings. The most important result is that the operating modes of grinding machines could be established by more efficient use of electrical energy. The significance of the work lies in the fact that by adapting the operating modes of the electric drive to the current parameters of the raw materials and the state of the equipment make possible to reduce the specific electrical energy consumption up to 15% and this is the basis for using a criterion based on specific costs in control systems for technological processes with grinding impact machines. For further application of the obtained results it is necessary to conduct experimental studies to confirm the increase in the efficiency of electrical energy use.

Publisher

Technical University of Moldova

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3