Centrifugal Compressors Gas-Dynamic Characteristics Influence on the Refrigerating Machines Efficiency

Author:

Danilishin A.M.,Kozhukhov Y. V.

Abstract

The article is devoted to the study R134a refrigerating machine efficiency and consisting of a centrifugal compressor, a condenser, a temperature-regulating valve and an evaporator. The main purpose of the work is to analyze the centrifugal compressor gas dynamic characteristics effect on the refrigeration machine vapor-compression cycle efficiency. This goal is achieved through the study by actual working process numerical experiment in the refrigeration machine centrifugal compressor with an idealized process for other elements. The object of the study are the refrigeration machine characteristics, expressed by the theoretical refrigeration coefficient COPRt. Single-stage centrifugal compressors with the design conditional flow coefficient in the range from 0.035 to 0.12 are considered. The design of centrifugal compressors was carried out according to a new calculation method to the flow part efficiency increase. The method comprehensively combines the inviscid and viscous flow calculations with the use of the single-criteria and multiparametric optimization. Previously, the method was tested and compared with experimental data. The most important result is the results of the refrigeration cycle efficiency evaluating through the centrifugal compressors highly efficient flow parts design methodology application. An increase in COPRt was obtained taking into account the centrifugal compressor actual process in the range from 2.6% to 7.2%. The significance of the results obtained lies in the possibility of using high-efficiency centrifugal compressors gas dynamic characteristics for the chillers refrigeration cycles analysis and calculation. The level of the compressors isentropic efficiency ranges from 0.80 to 0.85, depending on the design conditional flow coefficient.

Publisher

Technical University of Moldova

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3