Accuracy Improvement for the Determination of Parameters and Voltage Drops in Busbars, Considering the Networks Power Factor

Author:

Kotsur Mihail, ,Yarymbash Yulia,Bezverkhnya Dmitry,Kotsur Igor, , ,

Abstract

The power systems must satisfy the requirements both for high reliability and efficiency. The main component of the shop power supply systems is a busbar. There have been certain engineering techniques for the estimation of parameters, voltage and power losses, characterized by having a high error. Other methods have had a significant calculation efficiency, but without allowing the voltage drop to be determined as a function of the network power factor. Therefore, the aim of this work was to develop an approach that allowed an accurate estimation of the parameters and voltage drop in trolleys, depending on the network power factor. This approach was based on the decomposition of the electromagnetic processes in a trolley busbar by connecting one phase to estimate both the resistance and reactance in the absence of the external field, and two phases to estimate the resistance and reactance in the presence of the external field. The most significant results were the determination of the resistances and reactance, depending on the frequency of the current harmonics and the distance between the phases of the busbar. The dependences were proposed to estimate the resistance and reactance for the corresponding phases and current harmonic. The analytical expression of the ratio between the voltage drop in trolleys and the power factor of the network was obtained. The testing data confirmed the high accuracy of the proposed approach. The significance of the results composed a more precise determination of the parameters and voltage drops in each phase of trolleys, irregardless of their location, number, shape, as well as the phase currents’ non-symmetry, wasting no time for the field simulation

Publisher

Institute of Power Engineering

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3