Identification of QTL Underlying Seed Micronutrients Accumulation in ‘MD 96-5722’ by ‘Spencer’ Recombinant Inbred Lines of Soybean

Author:

Bellaloui Nacer,Khandaker Laila,Akond Masum,Kantartzi Stella K.,Meksem Khalid,Mengistu Alemu,Lightfoot DA,Kassem My Abdelmajid

Abstract

Genetic mapping of quantitative trait loci (QTL) associated with seed nutrition levels is almost non-existent. The objective of this study was to identify QTLs associated with seed micronutrients (iron, Fe; zinc, Zn; bororn, B; manganese, Mn; and copper, Cu) accumulation (concentration) in a population of 92 F5:7 recombinant inbred lines (RILs) that derived from a cross between MD 96-5722 (MD) and ‘Spencer’. For this purpose, a genetic linkage map based on 5,376 Single Nucleotide Polymorphism (SNP) markers was constructed using the Illumina Infinium SoySNP6K BeadChip array. The RILs were genotyped using 537 polymorphic, reliably segregating SNP markers. A total of 23 QTLs for micronutrients Fe, Zn, B, Mn, and Cu have been identified and mapped on eight linkage groups (LGs) of the soybean genome. Five QTLs were detected for Fe (qIRO001- qIRO005) on LGs N, A1, K, J, and G. Seven QTLs for Zn (qZIN001-qZIN007) on LGs D1a (Chr 1), N (Chr 3), F (Chr 5), B2 (Chr 14), J (Chr 16), A1 (Chr 5), and K (Chr 9). Two QTLs for B (qBOR001 and qBOR002) were detected on LGs N and A1. Four QTLs were detected for Mn (qMAN001-qMAN004) on LGs N, A1, K, and J, and five QTLs were detected for Cu (qCOP001- qCOP005) on LGs N, A1, K, J, and G). It was observed that the four QTLs for Zn, Cu, Fe, and Mn on LGs N (Chr 3), LG A1 (Chr 5), and LG J (Chr 16) were clustered in a similar region of the linkage groups, suggesting possible shared physiological and genetic mechanisms. The QTLs detected in this study are novel and will contribute to our understanding of the genetic basis of seed mineral nutrition. This research would allow breeders to efficiently select for higher seed nutritional qualities to meet the seed industry and human and livestock nutritional needs.

Publisher

Atlas Publishing, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3