The ‘PI 438489B’ by ‘Hamilton’ SNP-Based Genetic Linkage Map of Soybean [Glycine max (L.) Merr.] Identified Quantitative Trait Loci that Underlie Seedling SDS Resistance

Author:

Abdelmajid Kassem My,Ramos Laura,Leandro Leonor,Mbofung Gladys,Hyten David L.,Kantartzi Stella K.,Grier IV Robert L,Njiti Victor N.,Cianzio Silvia,Meksem Khalid

Abstract

Soybeans [Glycine max (L.) Merr.] are susceptible to many diseases including fungal diseases such as soybean sudden death syndrome (SDS). Several studies reported SDS resistance quantitative trait loci (QTL) on the soybean genome using different recombinant inbred line (RIL) populations and low density genetic linkage maps. High density exclusively single nucleotide polymorphisms-based (SNP-based) maps were not yet reported in soybean. The objectives of this study were (1) to construct a high density SNP-based genetic linkage map of soybean using the ‘PI438489B’ by ‘Hamilton’ (PIxH, n=50) recombinant inbred line population, and (2) to map QTL for SDS resistance using this high-density reliable genetic SNP-based map. The PI438489B by Hamilton high-density SNP-based genetic map was a high density map composed of 31 LGs, 648 SNPs, and covered 1,524.7 cM with an average of 2.37 cM between two adjacent SNP markers. Fourteen significant QTL were identified for SDS resistance using interval mapping (IM) and composite interval mapping (CIM) with LOD scores that ranged between 2.6 and 5.0. Twelve QTL were identified for foliar disease severity (FDS) and three QTL for root rot severity (RRS) of which one QTL underlain both FDS and RRS. The fourteen QTL were mapped onto ten separate chromosomes of the soybean genome. Seven of the intervals encompassing the QTL had been identified previously (on LGs C1, C2, D1b, G, L, N and O) associated with resistance to SDS but seven were novel (LGs A2 (2), B1, C2, D1a, D1b and O). We constructed the first PI438489B by Hamilton exclusively SNP-Based map and identified fourteen QTL that underlie SDS resistance including both resistances to foliar and root rot symptoms caused by Fusarium virguliforme infection. The QTL discovered here for SDS resistance could be useful to include in breeding programs in developing soybean cultivars resistant to SDS.

Publisher

Atlas Publishing, LLC

Subject

General Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3