Quantification of contrast agent materials using a new image- domain multi material decomposition algorithm based on dual energy CT

Author:

Mirzaei Fazel1,Faghihi Reza1

Affiliation:

1. Medical Radiation Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Abstract

Objective: Dual-Energy CT (DECT) is an imaging modality in which the objects are scanned by two different energy spectra. Using these two measurements, two type of materials can be separated and density image pairs can be generated as well. Decomposing more than two materials is necessary in both clinical and industrial CT applications. Methods: In our MMD, barycentric coordinates were chosen using an innovative local clustering method. Local clustering increases precision in the barycentric coordinates assignment by decreasing search domain. Therefore the algorithm can be run in parallel. For optimizing coordinates selection, a fast bi-directional Hausdorff distance measurement is used. To deal with the significant obstacle of noise, we used Doubly Local Wiener Filter Directional Window (DLWFDW) algorithm. Results: Briefly, the proposed algorithm separates blood and fat ROIs with errors of less than 2 and 9 % respectively on the clinical images. Also, the ability to decompose different materials with different concentrations is evaluated employing the phantom data. The highest accuracy obtained in separating different materials with different concentrations was 93 % (for calcium plaque) and 97.1 % (for iodine contrast agent) respectively. The obtained results discussed in detail in the following results section. Conclusion: In this study, we propose a new material decomposition algorithm. It improves the MMD work flow by employing tools which are easy to implement. Furthermore, in this study, an effort has been made to turn the MMD algorithm into a semi-automatic algorithm by employing clustering concept in material coordinate’s assignment. The performance of the proposed method is comparable to existing methods from qualitative and quantitative aspects. Advances in knowledge: All decomposition methods have their own specific problems. Image- domain decomposition also has barriers and problems, including the need for a predetermined table for the separation of different materials with specified coordinates. In the present study, it attempts to solve this problem by using clustering methods and relying on the intervals between different materials in the attenuation domain.

Publisher

British Institute of Radiology

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3