Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling

Author:

Luo Yi1ORCID,Tseng Huan-Hsin1,Cui Sunan,Wei Lise,Ten Haken Randall K.1,El Naqa Issam1

Affiliation:

1. Department of Radiation Oncology, University of Michigan, 519 W William Street, Ann Arbor, MI, USA

Abstract

Radiation outcomes prediction (ROP) plays an important role in personalized prescription and adaptive radiotherapy. A clinical decision may not only depend on an accurate radiation outcomes’ prediction, but also needs to be made based on an informed understanding of the relationship among patients’ characteristics, radiation response and treatment plans. As more patients’ biophysical information become available, machine learning (ML) techniques will have a great potential for improving ROP. Creating explainable ML methods is an ultimate task for clinical practice but remains a challenging one. Towards complete explainability, the interpretability of ML approaches needs to be first explored. Hence, this review focuses on the application of ML techniques for clinical adoption in radiation oncology by balancing accuracy with interpretability of the predictive model of interest. An ML algorithm can be generally classified into an interpretable (IP) or non-interpretable (NIP) (“black box”) technique. While the former may provide a clearer explanation to aid clinical decision-making, its prediction performance is generally outperformed by the latter. Therefore, great efforts and resources have been dedicated towards balancing the accuracy and the interpretability of ML approaches in ROP, but more still needs to be done. In this review, current progress to increase the accuracy for IP ML approaches is introduced, and major trends to improve the interpretability and alleviate the “black box” stigma of ML in radiation outcomes modeling are summarized. Efforts to integrate IP and NIP ML approaches to produce predictive models with higher accuracy and interpretability for ROP are also discussed.

Publisher

British Institute of Radiology

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3