Affiliation:
1. Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
2. King’s College Hospital, London, United Kingdom
3. The Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
Abstract
Interventional radiology is a relatively young specialty, and it is undergoing a period of considerable growth. The benefits of a minimally invasive approach are clear, with smaller incisions, less pain, and faster recovery times being the principal benefits compared to surgical alternatives. Trainees need to acquire the technical skills and the clinical acumen to accurately deliver targeted treatment and safely follow up patients after the procedure. The need to maintain an efficient interventional radiology service whilst also giving sufficient time for trainee education is a challenge. In order to compensate for this, novel technologies like virtual reality (VR), augmented reality (AR), cadaveric simulation, and three-dimensional (3D) printing have been postulated as a means of supplementing training. In this article, we outline the main features of these innovative strategies and discuss the evidence base behind them. Benefits of these techniques beyond pure clinical training include the standardization of educational cases, access to training at any time, and less risk to patients. The main disadvantage is the large financial outlay required. Therefore, before widespread uptake can be recommended, further research is needed to confirm the educational benefit of these novel techniques, both in and of themselves and in comparison to existing clinical-based education.
Publisher
British Institute of Radiology
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献