A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers

Author:

Iuga Andra-Iza1ORCID,Rauen Philip Santiago1,Siedek Florian1,Große-Hokamp Nils1,Sonnabend Kristina12,Maintz David1,Lennartz Simon1,Bratke Grischa1

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

2. Philips GmbH Market DACH, Hamburg, Germany

Abstract

Objectives: To evaluate the feasibility of combining compressed sense (CS) with a newly developed deep learning-based algorithm (CS-AI) using convolutional neural networks to accelerate 2D MRI of the knee. Methods: In this prospective study, 20 healthy volunteers were scanned with a 3T MRI scanner. All subjects received a fat-saturated sagittal 2D proton density reference sequence without acceleration and four additional acquisitions with different acceleration levels: 2, 3, 4 and 6. All sequences were reconstructed with the conventional CS and a new CS-AI algorithm. Two independent, blinded readers rated all images by seven criteria (overall image impression, visible artifacts, delineation of anterior ligament, posterior ligament, menisci, cartilage, and bone) using a 5-point Likert scale. Signal- and contrast-to-noise ratios were calculated. Subjective ratings and quantitative metrics were compared between CS and CS-AI with similar acceleration levels and between all CS/CS-AI images and the non-accelerated reference sequence. Friedman and Dunn´s multiple comparison tests were used for subjective, ANOVA and the Tukey Kramer test for quantitative metrics. Results: Conventional CS images at the lowest acceleration level (CS2) were already rated significantly lower than reference for 6/7 criteria. CS-AI images maintained similar image quality to the reference up to CS-AI three for all criteria, which would allow for a reduction in scan time of 64% with unchanged image quality compared to the unaccelerated sequence. SNR and CNR were significantly higher for all CS-AI reconstructions compared to CS (all p < 0.05). Conclusions AI-based image reconstruction showed higher image quality than CS for 2D knee imaging. Its implementation in the clinical routine yields the potential for faster MRI acquisition but needs further validation in non-healthy study subjects. Advances in knowledge Combining compressed SENSE with a newly developed deep learning-based algorithm using convolutional neural networks allows a 64% reduction in scan time for 2D imaging of the knee. Implementation of the new deep learning-based algorithm in clinical routine in near future should enable better image quality/resolution with constant scan time, or reduced acquisition times while maintaining diagnostic quality.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3