Implementation of AI image reconstruction in CT—how is it validated and what dose reductions can be achieved

Author:

Brady Samuel L.12ORCID

Affiliation:

1. Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

2. Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States

Abstract

CT reconstruction has undergone a substantial change over the last decade with the introduction of iterative reconstruction (IR) and now with deep learning reconstruction (DLR). In this review, DLR will be compared to IR and filtered back-projection (FBP) reconstructions. Comparisons will be made using image quality metrics such as noise power spectrum, contrast-dependent task-based transfer function, and non-prewhitening filter detectability index (dNPW'). Discussion on how DLR has impacted CT image quality, low-contrast detectability, and diagnostic confidence will be provided. DLR has shown the ability to improve in areas that IR is lacking, namely: noise magnitude reduction does not alter noise texture to the degree that IR did, and the noise texture found in DLR is more aligned with noise texture of an FBP reconstruction. Additionally, the dose reduction potential for DLR is shown to be greater than IR. For IR, the consensus was dose reduction should be limited to no more than 15–30% to preserve low-contrast detectability. For DLR, initial phantom and patient observer studies have shown acceptable dose reduction between 44 and 83% for both low- and high-contrast object detectability tasks. Ultimately, DLR is able to be used for CT reconstruction in place of IR, making it an easy “turnkey” upgrade for CT reconstruction. DLR for CT is actively being improved as more vendor options are being developed and current DLR options are being enhanced with second generation algorithms being released. DLR is still in its developmental early stages, but is shown to be a promising future for CT reconstruction.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3