Evaluation of the dataset quality in gamma passing rate predictions using machine learning methods

Author:

Quintero Paulo12ORCID,Benoit David1,Cheng Yongqiang1,Moore Craig2,Beavis Andrew123

Affiliation:

1. Faculty of Science and Engineering, University of Hull, Hull, United Kingdom

2. Medical Physics Service, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Castle Road, Hull, United Kingdom

3. Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom

Abstract

Objective: Gamma passing rate (GPR) predictions using machine learning methods have been explored for treatment verification of radiotherapy plans. However, these methods presented datasets with unbalanced number of plans having different treatment conditions (heterogeneous datasets), such as anatomical sites or dose per fractions, leading to lower model interpretability and prediction performance. Methods: We investigated the impact of the dataset composition on GPR binary classification (pass/fail) using random forest (RF), XG-boost, and neural network (NN) models. 945 plans were used to create one reference dataset (randomly assembled) and 24 customized datasets that considered four heterogeneity factors independently (anatomical region, number of arcs, dose per fraction, and treatment unit). 309 predictor features were extracted and calculated from plan parameters, modulation complexity metrics, and radiomic analysis (leave-trajectory maps, 3D dose distributions, and portal dosimetry images). The models’ performances were measured using the area under the curve from the receiver operating characteristic (ROC-AUC). Results: Radiomics features for reference models increased ROC-AUC values up to 13%, 15%, and 5% for RF, XG-Boost, and NN, respectively. The datasets with higher heterogeneous conditions presented the lower ROC-AUC values (RF: 0.72 ± 0.11, XG-Boost: 0.67 ± 0.1, NN: 0.89 ± 0.05) compared to models with less heterogeneous treatment conditions (RF: 0.88 ± 0.06, XG-Boost: 0.89 ± 0.07, NN: 0.98 ± 0.01). The ten most important features for each heterogeneity dataset group demonstrated their correlation with the treatments’ physical aspects and GPR prediction. Conclusion: Improvements in data generalization and model performances can be associated with datasets having similar treatment conditions. This analysis might be implemented to evaluate the dataset quality and model consistency of further ML applications in radiotherapy. Advances in knowledge: Dataset heterogeneities decrease ML model performance and reliability.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3