Black box no more: a scoping review of AI governance frameworks to guide procurement and adoption of AI in medical imaging and radiotherapy in the UK

Author:

Stogiannos Nikolaos123ORCID,Malik Rizwan4,Kumar Amrita5,Barnes Anna6,Pogose Michael7,Harvey Hugh7,McEntee Mark F1,Malamateniou Christina28

Affiliation:

1. Discipline of Medical Imaging and Radiation Therapy, University College Cork, Cork, Ireland

2. Division of Midwifery & Radiography, City, University of London, London, United Kingdom

3. Medical Imaging Department, Corfu General Hospital, Corfu, Greece

4. Bolton NHS Foundation Trust, Farnworth, United Kingdom

5. Frimley Health NHS Foundation Trust, Frimley, United Kingdom

6. King’s Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King’s College London, London, United Kingdom

7. Hardian Health, Bolton, United Kingdom

8. School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland

Abstract

Technological advancements in computer science have started to bring artificial intelligence (AI) from the bench closer to the bedside. While there is still lots to do and improve, AI models in medical imaging and radiotherapy are rapidly being developed and increasingly deployed in clinical practice. At the same time, AI governance frameworks are still under development. Clinical practitioners involved with procuring, deploying, and adopting AI tools in the UK should be well-informed about these AI governance frameworks. This scoping review aimed to map out available literature on AI governance in the UK, focusing on medical imaging and radiotherapy. Searches were performed on Google Scholar, Pubmed, and the Cochrane Library, between June and July 2022. Of 4225 initially identified sources, 35 were finally included in this review. A comprehensive conceptual AI governance framework was proposed, guided by the need for rigorous AI validation and evaluation procedures, the accreditation rules and standards, and the fundamental ethical principles of AI. Fairness, transparency, trustworthiness, and explainability should be drivers of all AI models deployed in clinical practice. Appropriate staff education is also mandatory to ensure AI’s safe and responsible use. Multidisciplinary teams under robust leadership will facilitate AI adoption, and it is crucial to involve patients, the public, and practitioners in decision-making. Collaborative research should be encouraged to enhance and promote innovation, while caution should be paid to the ongoing auditing of AI tools to ensure safety and clinical effectiveness.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3