Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs

Author:

Jeon Su-Jin1,Yun Jong-Pil2,Yeom Han-Gyeol3,Shin Woo-Sang24,Lee Jong-Hyun24,Jeong Seung-Hyun2,Seo Min-Seock1

Affiliation:

1. Department of Conservative Dentistry, Wonkwang University Daejeon Dental Hospital, Daejeon, South Korea

2. Safety System Research Group, Korea Institute of Industrial Technology (KITECH), Gyeongsan, South Korea

3. Department of Oral and Maxillofacial Radiology, Wonkwang University Daejeon Dental Hospital, Daejeon, South Korea

4. School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, South Korea

Abstract

Objective: The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Methods: Panoramic and cone beam CT (CBCT) images obtained from June 2018 to May 2020 were screened and 1020 patients were selected. Our dataset of 2040 sound mandibular second molars comprised 887 C-shaped canals and 1153 non-C-shaped canals. To confirm the presence of a C-shaped canal, CBCT images were analyzed by a radiologist and set as the gold standard. A CNN-based deep-learning model for predicting C-shaped canals was built using Xception. The training and test sets were set to 80 to 20%, respectively. Diagnostic performance was evaluated using accuracy, sensitivity, specificity, and precision. Receiver-operating characteristics (ROC) curves were drawn, and the area under the curve (AUC) values were calculated. Further, gradient-weighted class activation maps (Grad-CAM) were generated to localize the anatomy that contributed to the predictions. Results: The accuracy, sensitivity, specificity, and precision of the CNN model were 95.1, 92.7, 97.0, and 95.9%, respectively. Grad-CAM analysis showed that the CNN model mainly identified root canal shapes converging into the apex to predict the C-shaped canals, while the root furcation was predominantly used for predicting the non-C-shaped canals. Conclusions: The deep-learning system had significant accuracy in predicting C-shaped canals of mandibular second molars on panoramic radiographs.

Publisher

British Institute of Radiology

Subject

General Dentistry,Radiology, Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3