Metal artefact reduction in the oral cavity using deep learning reconstruction algorithm in ultra-high-resolution computed tomography: a phantom study

Author:

Sakai Yuki1ORCID,Kitamoto Erina2,Okamura Kazutoshi2,Tatsumi Masato1,Shirasaka Takashi1,Mikayama Ryoji1,Kondo Masatoshi1,Hamasaki Hiroshi1,Kato Toyoyuki1,Yoshiura Kazunori2

Affiliation:

1. Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan

2. Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan

Abstract

Objectives: This study aimed to improve the impact of the metal artefact reduction (MAR) algorithm for the oral cavity by assessing the effect of acquisition and reconstruction parameters on an ultra-high-resolution CT (UHRCT) scanner. Methods: The mandible tooth phantom with and without the lesion was scanned using super-high-resolution, high-resolution (HR), and normal-resolution (NR) modes. Images were reconstructed with deep learning-based reconstruction (DLR) and hybrid iterative reconstruction (HIR) using the MAR algorithm. Two dental radiologists independently graded the degree of metal artefact (1, very severe; 5, minimum) and lesion shape reproducibility (1, slight; 5, almost perfect). The signal-to-artefact ratio (SAR), accuracy of the CT number of the lesion, and image noise were calculated quantitatively. The Tukey-Kramer method with a p-value of less than 0.05 was used to determine statistical significance. Results: The HRDLR visual score was better than the NRHIR score in terms of degree of metal artefact (4.6 ± 0.5 and 2.6 ± 0.5, p < 0.0001) and lesion shape reproducibility (4.5 ± 0.5 and 2.9 ± 1.1, p = 0.0005). The SAR of HRDLR was significantly better than that of NRHIR (4.9 ± 0.4 and 2.1 ± 0.2, p < 0.0001), and the absolute percentage error of the CT number in HRDLR was lower than that in NRHIR (0.8% in HRDLR and 23.8% in NRIR). The image noise of HRDLR was lower than that of NRHIR (15.7 ± 1.4 and 51.6 ± 15.3, p < 0.0001). Conclusions: Our study demonstrated that the combination of HR mode and DLR in UHRCT scanner improved the impact of the MAR algorithm in the oral cavity.

Publisher

British Institute of Radiology

Subject

General Dentistry,Radiology Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3