Affiliation:
1. Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, South Korea
Abstract
Objectives: This study aimed to develop a fully automated human identification method based on a convolutional neural network (CNN) with a large-scale dental panoramic radiograph (DPR) data set. Methods: In total, 2760 DPRs from 746 subjects who had 2–17 DPRs with various changes in image characteristics due to various dental treatments (tooth extraction, oral surgery, prosthetics, orthodontics, or tooth development) were collected. The test data set included the latest DPR of each subject (746 images) and the other DPRs (2014 images) were used for model training. A modified VGG16 model with two fully connected layers was applied for human identification. The proposed model was evaluated with rank-1, -3, and -5 accuracies, running time, and gradient-weighted class activation mapping (Grad-CAM)-applied images. Results: This model had rank-1, -3, and -5 accuracies of 82.84%, 89.14%, and 92.23%, respectively. All rank-1 accuracy values of the proposed model were above 80% regardless of changes in image characteristics. The average running time to train the proposed model was 60.9 s per epoch, and the prediction time for 746 test DPRs was short (3.2 s/image). The Grad-CAM technique verified that the model automatically identified humans by focusing on identifiable dental information. Conclusion: The proposed model showed good performance in fully automatic human identification despite differing image characteristics of DPRs acquired from the same patients. Our model is expected to assist in the fast and accurate identification by experts by comparing large amounts of images and proposing identification candidates at high speed.
Publisher
British Institute of Radiology
Subject
General Dentistry,Radiology, Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献