Influence of windowing and metal artefact reduction algorithms on the volumetric dimensions of five different high-density materials: a cone-beam CT study

Author:

Coelho-Silva Fernanda1ORCID,Martins Luciano Augusto Cano1,Braga Daniela Azeredo2,Zandonade Eliana3,Haiter-Neto Francisco1,de-Azevedo-Vaz Sergio Lins14

Affiliation:

1. Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil

2. Bachelor of Statistics in progress, Federal University of Espírito Santo, Espírito Santo, Brazil

3. Department of Statistics, Federal University of Espírito Santo, Espírito Santo, Brazil

4. Department of Clinical Dentistry, Federal University of Espírito Santo, Espírito Santo, Brazil

Abstract

Objective: To assess the influence of windowing and metal artefact reduction (MAR) algorithms on the volumetric dimensions of high-density materials using two CBCT systems. Methods: Four cylinders of amalgam, cobalt-chromium, gutta-percha, titanium and zirconium, were manufactured and their physical volumes (PV) were measured. A polymethyl methacrylate phantom containing the cylinders was submitted to CBCT acquisitions with Picasso Trio and OP300 units with their MAR enabled and disabled. The tomographic volume (TV) of all the cylinders was obtained by semi-automatic segmentation using two windowing adjustments: W1—large window width and upper window level; W2—narrow window width and low window level. Volumetric distortion was expressed as the difference between TV and PV. Statistics comprised intraclass correlation coefficient (ICC) and analysis of variance (ANOVA) for repeated measures with Tukey post hoc test (α = 5%). Results: The ICC values ​​indicated excellent reproducibility of TV. Gutta-percha and titanium resulted in the smallest volumetric distortion. Using W1 provided less volumetric distortion for almost all experimental conditions (p < 0.05). Activating MAR algorithm of Picasso Trio underestimated gutta-percha and titanium TV (p < 0.05) and was inefficient in significantly reducing the volumetric distortion of the other materials (p > 0.05). Disabling MAR algorithm of OP300 resulted in smaller volumetric distortion for almost all experimental conditions (p < 0.05). Conclusions: The TV of gutta-percha and titanium were closer to the PV. In general, the MAR algorithms of both systems were inefficient in significantly reducing the volumetric distortion of high-density materials. We encourage the use of large window width and upper window level to evaluate high-density materials.

Publisher

British Institute of Radiology

Subject

General Dentistry,Radiology, Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3