Outcome-based multiobjective optimization of lymphoma radiation therapy plans

Author:

Modiri Arezoo1,Vogelius Ivan2,Rechner Laura Ann2,Nygård Lotte2,Bentzen Søren M3,Specht Lena2

Affiliation:

1. Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA

2. Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

3. Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, USA

Abstract

At its core, radiation therapy (RT) requires balancing therapeutic effects against risk of adverse events in cancer survivors. The radiation oncologist weighs numerous disease and patient-level factors when considering the expected risk–benefit ratio of combined treatment modalities. As part of this, RT plan optimization software is used to find a clinically acceptable RT plan delivering a prescribed dose to the target volume while respecting pre-defined radiation dose–volume constraints for selected organs at risk. The obvious limitation to the current approach is that it is virtually impossible to ensure the selected treatment plan could not be bettered by an alternative plan providing improved disease control and/or reduced risk of adverse events in this individual. Outcome-based optimization refers to a strategy where all planning objectives are defined by modeled estimates of a specific outcome’s probability. Noting that various adverse events and disease control are generally incommensurable, leads to the concept of a Pareto-optimal plan: a plan where no single objective can be improved without degrading one or more of the remaining objectives. Further benefits of outcome-based multiobjective optimization are that quantitative estimates of risks and benefit are obtained as are the effects of choosing a different trade-off between competing objectives. Furthermore, patient-level risk factors and combined treatment modalities may be integrated directly into plan optimization. Here, we present this approach in the clinical setting of multimodality therapy for malignant lymphoma, a malignancy with marked heterogeneity in biology, target localization, and patient characteristics. We discuss future research priorities including the potential of artificial intelligence.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3