Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma

Author:

Peng Hui1,Yang Qiuxing12,Xue Ting1,Chen Qiaoling1,Li Manman1,Duan Shaofeng3,Cai Bo4,Feng Feng1

Affiliation:

1. Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, China

2. Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China

3. GE Healthcare China, Shanghai, China

4. Nantong Center for Disease Control and Prevention Institue of Chronic, Noncommunicable Diseases Prevention and Control, Nantong, China

Abstract

Objective The present study explored the value of preoperative CT radiomics in predicting lymphovascular invasion (LVI) in esophageal squamous cell carcinoma (ESCC). Methods A retrospective analysis of 294 pathologically confirmed ESCC patients undergoing surgical resection and their preoperative chest-enhanced CT arterial images were used to delineate the target area of the lesion. All patients were randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Radiomics features were extracted from single-slice, three-slice, and full-volume regions of interest (ROIs). The least absolute shrinkage and selection operator (LASSO) regression method was applied to select valuable radiomics features. Radiomics models were constructed using logistic regression method and were validated using leave group out cross-validation (LGOCV) method. The performance of the three models was evaluated using the receiver characteristic curve (ROC) and decision curve analysis (DCA). Results A total of 1218 radiomics features were separately extracted from single-slice ROIs, three-slice ROIs, and full-volume ROIs, and 16, 13 and 18 features, respectively, were retained after optimization and screening to construct a radiomics prediction model. The results showed that the AUC of the full-volume model was higher than that of the single-slice and three-slice models. According to LGOCV, the full-volume model showed the highest mean AUC for the training cohort and the validation cohort. Conclusion The full-volume radiomics model has the best predictive performance and thus can be used as an auxiliary method for clinical treatment decision making. Advances in knowledge: LVI is considered to be an important initial step for tumor dissemination. CT radiomics features correlate with LVI in ESCC and can be used as potential biomarkers for predicting LVI in ESCC.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3