Affiliation:
1. Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
Abstract
Objectives: To assess the impact of noise-optimised virtual monoenergetic imaging (VMI+) on image quality and diagnostic evaluation in abdominal dual-energy CT scans with impaired portal-venous contrast. Methods: We screened 11,746 patients who underwent portal-venous abdominal dual-energy CT for cancer staging between 08/2014 and 11/2019 and identified those with poor portal-venous contrast. Standard linearly-blended image series and VMI+ image series at 40, 50, and 60 keV were reconstructed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of abdominal organs and vascular structures were calculated. Image noise, image contrast and overall image quality were rated by three radiologists using 5-point Likert scale. Results: 452 of 11,746 (4%) exams were poorly opacified. We excluded 190 cases due to incomplete datasets or multiple exams of the same patient with a final study group of 262. Highest CNR values in all abdominal organs (liver, 6.4 ± 3.0; kidney, 17.4 ± 7.5; spleen, 8.0 ± 3.5) and vascular structures (aorta, 16.0 ± 7.3; intrahepatic vein, 11.3 ± 4.7; portal vein, 15.5 ± 6.7) were measured at 40 keV VMI+ with significantly superior values compared to all other series. In subjective analysis, highest image contrast was seen at 40 keV VMI+ (4.8 ± 0.4), whereas overall image quality peaked at 50 keV VMI+ (4.2 ± 0.5) with significantly superior results compared to all other series (p < 0.001). Conclusions: Image reconstruction using VMI+ algorithm at 50 keV significantly improves image contrast and image quality of originally poorly opacified abdominal CT scans and reduces the number of non-diagnostic scans. Advances in knowledge: We validated the impact of VMI+ reconstructions in poorly attenuated DECT studies of the abdomen in a big data cohort.
Publisher
British Institute of Radiology
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献