A CT-based radiomics nomogram for predicting prognosis of coronavirus disease 2019 (COVID-19) radiomics nomogram predicting COVID-19

Author:

Chen Hang1,Zeng Ming2,Wang Xinglan1,Su Liping1,Xia Yuwei3,Yang Quan1,Liu Dan1

Affiliation:

1. Department of Radiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China

2. Department of Respiratory and Critical Care Medicine, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China

3. Huiying Medical Technology Co., Ltd, Dongsheng Science and Technology Park, Beijing, China

Abstract

Objectives: To identify the value of radiomics method derived from CT images to predict prognosis in patients with COVID-19. Methods: A total of 40 patients with COVID-19 were enrolled in the study. Baseline clinical data, CT images, and laboratory testing results were collected from all patients. We defined that ROIs in the absorption group decreased in the density and scope in GGO, and ROIs in the progress group progressed to consolidation. A total of 180 ROIs from absorption group (n = 118) and consolidation group (n = 62) were randomly divided into a training set (n = 145) and a validation set (n = 35) (8:2). Radiomics features were extracted from CT images, and the radiomics-based models were built with three classifiers. A radiomics score (Rad-score) was calculated by a linear combination of selected features. The Rad-score and clinical factors were incorporated into the radiomics nomogram construction. The prediction performance of the clinical factors model and the radiomics nomogram for prognosis was estimated. Results: A total of 15 radiomics features with respective coefficients were calculated. The AUC values of radiomics models (kNN, SVM, and LR) were 0.88, 0.88, and 0.84, respectively, showing a good performance. The C-index of the clinical factors model was 0.82 [95% CI (0.75–0.88)] in the training set and 0.77 [95% CI (0.59–0.90)] in the validation set. The radiomics nomogram showed optimal prediction performance. In the training set, the C-index was 0.91 [95% CI (0.85–0.95)], and in the validation set, the C-index was 0.85 [95% CI (0.69–0.95)]. For the training set, the C-index of the radiomics nomogram was significantly higher than the clinical factors model (p = 0.0021). Decision curve analysis showed that radiomics nomogram outperformed the clinical model in terms of clinical usefulness. Conclusions: The radiomics nomogram based on CT images showed favorable prediction performance in the prognosis of COVID-19. The radiomics nomogram could be used as a potential biomarker for more accurate categorization of patients into different stages for clinical decision-making process. Advances in knowledge: Radiomics features based on chest CT images help clinicians to categorize the patients of COVID-19 into different stages. Radiomics nomogram based on CT images has favorable predictive performance in the prognosis of COVID-19. Radiomics act as a potential modality to supplement conventional medical examinations.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3