Clinical quantitative MRI and the need for metrology

Author:

Cashmore Matt T1,McCann Aaron J2,Wastling Stephen J3,McGrath Cormac2,Thornton John3,Hall Matt G1

Affiliation:

1. National Physical Laboratory, Teddington, UK

2. Belfast Health and Social Care Trust, Belfast, Ireland

3. Neuroradiological Academic Unit, UCL Institute of Neurology, University College London, London, UK

Abstract

MRI has been an essential diagnostic tool in healthcare for several decades. It offers unique insights into most tissues without the need for ionising radiation. Historically, MRI has been predominantly used qualitatively, images are formed to allow visual discrimination of tissues types and pathologies, rather than providing quantitative measurements. Increasingly, quantitative MRI (qMRI) is also finding clinical application, where images provide the basis for physical measurements of, e.g. tissue volume measures and represent aspects of tissue composition and microstructure. This article reviews some common current research and clinical applications of qMRI from the perspective of measurement science. qMRI not only offers additional information for radiologists, but also the opportunity for improved harmonisation and calibration between scanners and as such it is well-suited to large-scale investigations such as clinical trials and longitudinal studies. Realising these benefits, however, presents a new kind of technical challenge to MRI practioners. When measuring a parameter quantitatively, it is crucial that the reliability and reproducibility of the technique are well understood. Strictly speaking, a numerical result of a measurement is meaningless unless it is accompanied by a description of the associated measurement uncertainty. It is therefore necessary to produce not just estimates of physical properties in a quantitative image, but also their associated uncertainties. As the process of determining a physical property from the raw MR signal is complicated and multistep, estimation of uncertainty is challenging and there are many aspects of the MRI process that require validation. With the clinical implementation of qMRI techniques and its continued expansion, there is a clear and urgent need for metrology in this field.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3