Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study

Author:

Takahashi Wataru1,Oshikawa Shota1,Mori Shinichiro2

Affiliation:

1. Technology Research Laboratory, Shimadzu Corporation, Kyoto, 619-0237, Japan

2. Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan

Abstract

Objective: For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies. Methods: We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom’s lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom’s treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition. Results: We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing. Conclusions: We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies. Advances in knowledge: Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3