Targeting cancer stem cells: protons versus photons

Author:

Dini Valentina1,Belli Mauro2,Tabocchini Maria Antonella1

Affiliation:

1. National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità (ISS) and Istituto Nazionale di Fisica Nucleare (INFN)-Roma 1, Rome, Italy

2. Independent researcher, Italy (formerly Istituto Superiore di Sanità, Rome, Italy)

Abstract

Recent studies on cancer stem cells revealed they are tumorigenic and able to recapitulate the characteristics of the tumour from which they derive, so that it was suggested that elimination of this population is essential to prevent recurrences after any treatment. However, there is evidence that cancer stem cells are inherently resistant to conventional (photon) radiotherapy. Since the use of proton beam therapy in cancer treatment is growing rapidly worldwide, mainly because of their excellent dosimetric properties, the possibility could be considered that they also have biological advantages through preferential elimination of cancer stem cells.Indeed, a review of preclinical data suggest that protons and photons differ in their biological effects on cancer stem cells, with protons offering potential advantages, although the heterogeneity of cancer stem cells and the different proton irradiation modalities make the comparison of the results not so easy. Further research to understand the mechanisms underlying such effects is important for their possible exploitation in clinics and to perform proton beam therapy optimization.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3