Evaluation of a new image reconstruction method for digital breast tomosynthesis: effects on the visibility of breast lesions and breast density

Author:

Krammer Julia1,Zolotarev Sergei2,Hillman Inge3,Karalis Konstantinos3,Stsepankou Dzmitry4,Vengrinovich Valeriy2,Hesser Jürgen256,M. Svahn Tony78ORCID

Affiliation:

1. Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Heidelberg University Mannheim, Mannheim, Germany

2. National Academy of Science of Belarus, Institute of Applied Physics, Minsk, Belarus

3. Mammography Section, Gävle Hospital, Gävle, Sweden

4. Department of Experimental Radiooncology, Medical Faculty Mannheim, Heidelberg University, Germany

5. Central Institute for Computer Engineering (ZITI), Heidelberg University, Germany

6. Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany

7. Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden

8. Department of Imaging and functional medicine, Division diagnostics, Gävle hospital, Gävle, Region Gävleborg, Sweden

Abstract

Objective: To compare image quality and breast density of two reconstruction methods, the widely-used filtered-back projection (FBP) reconstruction and the iterative heuristic Bayesian inference reconstruction (Bayesian inference reconstruction plus the method of total variation applied, HBI). Methods: Thirty-two clinical DBT data sets with malignant and benign findings, n = 27 and 17, respectively, were reconstructed using FBP and HBI. Three experienced radiologists evaluated the images independently using a 5-point visual grading scale and classified breast density according to the American College of Radiology Breast Imaging-Reporting And Data System Atlas, fifth edition. Image quality metrics included lesion conspicuity, clarity of lesion borders and spicules, noise level, artifacts surrounding the lesion, visibility of parenchyma and breast density. Results: For masses, the image quality of HBI reconstructions was superior to that of FBP in terms of conspicuity,clarity of lesion borders and spicules (p < 0.01). HBI and FBP were not significantly different in calcification conspicuity. Overall, HBI reduced noise and supressed artifacts surrounding the lesions better (p < 0.01). The visibility of fibroglandular parenchyma increased using the HBI method (p < 0.01). On average, five cases per radiologist were downgraded from BI-RADS breast density category C/D to A/B. Conclusion: HBI significantly improves lesion visibility compared to FBP. HBI-visibility of breast parenchyma increased, leading to a lower breast density rating. Applying the HBIR algorithm should improve the diagnostic performance of DBT and decrease the need for additional imaging in patients with dense breasts. Advances in knowledge: Iterative heuristic Bayesian inference (HBI) image reconstruction substantially improves the image quality of breast tomosynthesis leading to a better visibility of breast carcinomas and reduction of the perceived breast density compared to the widely-used filtered-back projection (FPB) reconstruction. Applying HBI should improve the accuracy of breast tomosynthesis and reduce the number of unnecessary breast biopsies. It may also reduce the radiation dose for the patients, which is especially important in the screening context.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3