A method for cranial target delineation in radiotherapy treatment planning aided by single-voxel magnetic resonance spectroscopy: evaluation using a custom-designed gel-based phantom and simulations

Author:

Zeinali- Rafsanjani Banafsheh12,Mosleh-Shirazi Mohammad Amin34,Faghihi Reza25,Saeedi-Moghadam Mahdi1,Lotfi Mehrzad1,Jalli Reza1

Affiliation:

1. Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran

2. Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

3. Ionizing and Nonionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

4. Radiotherapy and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran

5. Radiation research center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Abstract

Objective: Magnetic resonance spectroscopy (MRS) has been useful in radiotherapy treatment planning (RTP) especially in tumor delineation. Routinely, 2D/3D MRSI data are used for this application. However, not all centers have access to 2D/3D MRSI. The objective of this study was to introduce a method of using single-voxel spectroscopy (SVS) data in target delineation and assess its reliability. Methods: A gel-based phantom containing Creatine (Cr), N-acetyl-l-aspartic-acid (NAA), and Choline (Cho) was designed and built. The metabolite ratios simulate the normal and tumoral part of the brain. The jMRUI software (v. 6.0) was used to simulate a 1.5 T GE MRI scanner. The metabolite spectra provided by different time of echos (TE)s of the Point-RESolved Spectroscopy pulse-sequence (PRESS), different data-points, and post-processings were quantized by jMRUI. PseudoMRSI maps of Cho/Cr, NAA/Cr, and Cho + Cr/NAA were created. A conformity index (CI) was used to determine which metabolite-ratio isolines are more appropriate for tumor delineation. Results: The simulation accuracy was verified. There were no differences > 4% between the measured and simulated spectra in peak regions. The pseudoMRSI map of Cho + Cr/NAA smoothly followed the complicated geometry of the tumor inside the gel-based phantom. The results showed that the single-voxel spectra produced by the PRESS pulse sequence with the TE of 144 ms, 512 data-points, and minimum post-processings of water suppression, eddy current correction, and baseline correction can be used for target delineation. Conclusion: This study suggests that SVS data can be used to aid target delineation by using a mathematical approach. This can enable a wider use of MR-derived information in radiotherapy. Advances in knowledge: To the best of our knowledge, until now, 2D or 3D MRSI data provided from 3T MRI scanners have been used for MRS-based radiotherapy treatment planning. However, there are a lot of centers that are equipped to 1.5 T MRI scanners and some of them just equipped to SVS. This study introduces a mathematical approach to help these centers to take the benefits of MRS-based treatment planning.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3