A hypothesis: radiation carcinogenesis may result from tissue injuries and subsequent recovery processes which can act as tumor promoters and lead to an earlier onset of cancer

Author:

Nakamura Nori1

Affiliation:

1. Dept. of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima city, Japan

Abstract

Cancer risks from radiation can be observed as an increase in mortality when compared to a control group. However, it is unknown if this increased risk results from the induction of cancer or from an earlier onset of cancer. In mouse studies, it has been repeatedly shown that after an irradiation, the survival curve is shifted toward lower ages, but remains parallel to the control curve, and the extent of the shift in time to lower ages is dose-dependent. This shift is not satisfactorily explained by the induction model which assumes that cancers in the exposed group consist of spontaneous and induced events. Consequently, it seems that this shift could be interpreted to mean that all animals in the exposed group had suffered from life shortening. Under this scenario, however, it turns out that the radiation effects can no longer be interpreted as the result of oncogenic mutations, because these effects would have to involve all tumors, and the effectiveness of radiation changes with the dose. This leads to the speculation that radiation exposures induce a broad range of tissue injuries, and that these injuries are subsequently subjected to longlasting systemic recovery processes which act as promoters for tumor cells. In other words, potential cancer stem cells which were located in the irradiated field can escape oncogenic damage but undergo stimulation later in life toward the development of malignancy from radiation-induced activated microenvironment. This is an unusual form of the non-targeted or bystander effects of radiation. It is worth noting that this model suggests that there could be a path or paths which could be used to intervene in the process of post-exposure carcinogenesis, and that cancer risks at low doses could be described as days or weeks of life lost.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3