Evaluation of metal artefacts for two CBCT devices with a new dental arch phantom

Author:

Martins Luciano Augusto Cano1,Queiroz Polyane Mazucatto1,Nejaim Yuri1,Vasconcelos Karla de Faria2,Groppo Francisco Carlos3,Haiter-Neto Francisco1

Affiliation:

1. Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Sao Paulo, Brazil

2. Department of Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium

3. Department of Physiological Sciences, Division of Pharmacology, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, Brazil

Abstract

Objectives: To create a new phantom design to evaluate the real impact of artefacts caused by titanium on bone structures in cone beam CT images considering different positions and quantity of metals in the dental arch, with and without metal artefact reduction (MAR). Methods: A three cylindrical polymethyl methacrylate (PMMA) plate phantom was designed containing eight perforations arranged to simulate the lower dental arch in the intermediate plate. Three titanium cylinders were positioned in different locations and quantities to test different clinical conditions and to quantify the impact of the metal artefact around five bone cylinders. Scans were carried out in seven different protocols (Control, A-F) in two cone beam CT devices (OP300 Maxio and Picasso Trio). Eight regions of interest around each cortical and trabecular bone were used to measure the grey value standard deviation corresponding the artefact expression in the Image J software. Both the artefact expression and the MAR effect were assessed using the Wilcoxon, Friedman (Dunn) and Kruskal–Wallis tests (significance level of 5%). Results: For both devices, MAR was statistically efficient only for the protocols E, and F. Protocol F (three metals on the adjacent area of the analysis region) showed higher artefact expression when compared to the others. Conclusion: In conclusion, the new phantom design allowed the quantification of the metal artefact expression caused by titanium. The metal artefact expression is higher when more metal objects are positioned in the adjacent bone structures. MAR may not be effective to reduce artefact expression on the adjacencies of those objects for the devices studied.

Publisher

British Institute of Radiology

Subject

General Dentistry,Radiology, Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3