Method validation to assess in vivo cellular and subcellular changes in buccal mucosa cells and saliva following CBCT examinations

Author:

Belmans Niels12,Gilles Liese1,Virag Piroska3,Hedesiu Mihaela3,Salmon Benjamin4,Baatout Sarah2,Lucas Stéphane5,Jacobs Reinhilde67,Lambrichts Ivo1,Moreels Marjan2

Affiliation:

1. Morphology Group, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium

2. Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium

3. ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Department of Oral and Maxillofacial Radiology, Cluj-Napoca, Romania

4. Department of Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine, Paris Descartes University - Sorbonne Paris Cité, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France

5. University of Namur, Research Institute for Life Sciences, Namur, Belgium

6. Department of Imaging and Pathology Katholieke Universiteit Leuven, OMFS IMPATH Research Group, and University Hospitals, Oral and Maxillofacial Surgery, Dentomaxillofacial Imaging Center, Leuven, Belgium

7. Department Dental Medicine, Karolinska Institutet, Huddinge, Sweden

Abstract

Objectives: Cone-beam CT (CBCT) is a medical imaging technique used in dental medicine. However, there are no conclusive data available indicating that exposure to X-ray doses used by CBCT are harmless. We aim, for the first time, to characterize the potential age-dependent cellular and subcellular effects related to exposure to CBCT imaging. Current objective is to describe and validate the protocol for characterization of cellular and subcellular changes after diagnostic CBCT. Methods: Development and validation of a dedicated two-part protocol: 1) assessing DNA double strand breaks (DSBs) in buccal mucosal (BM) cells and 2) oxidative stress measurements in saliva samples. BM cells and saliva samples are collected prior to and 0.5 h after CBCT examination. BM cells are also collected 24 h after CBCT examination. DNA DSBs are monitored in BM cells via immunocytochemical staining for γH2AX and 53BP1. 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dG) and total antioxidant capacity are measured in saliva to assess oxidative damage. Results: Validation experiments show that sufficient BM cells are collected (97.1 ± 1.4 %) and that γH2AX/53BP1 foci can be detected before and after CBCT examination. Collection and analysis of saliva samples, either sham exposed or exposed to IR, show that changes in 8-oxo-dG and total antioxidant capacity can be detected in saliva samples after CBCT examination. Conclusion: The DIMITRA Research Group presents a two-part protocol to analyze potential age-related biological differences following CBCT examinations. This protocol was validated for collecting BM cells and saliva and for analyzing these samples for DNA DSBs and oxidative stress markers, respectively.

Publisher

British Institute of Radiology

Subject

General Dentistry,Radiology Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3