Valorization of Opuntia ficus-Indica Pads and Steel Industry FeCl3-Rich Rejection for Removing Surfactant and Phenol from Oil Refinery Wastewater Through Coagulation-Flocculation

Author:

Dkhissi Ouafae12,Chatoui Mohammed2ORCID,El Hakmaoui Ahmed1,Abouri Meriem2,Kadmi Yassine3,Akssira Mohamed1,Souabi Salah2ORCID

Affiliation:

1. Laboratory of Physical Chemistry and Bioorganic Chemistry, Faculty of Sciences and Techniques Mohammedia, Hassan II University of Casablanca, Morocco

2. Engineering Laboratory of Water and Environment, Faculty of Sciences and Techniques Mohammedia, Hassan II University of Casablanca, Morocco

3. University of Lille, Lille, France

Abstract

Background. Refinement of crude vegetable oil generates a large amount of wastewater and is a source of water pollution due to the presence of surfactants and phenols. Phenols are toxic aromatic compounds that can be lethal to fauna and flora, entraining the deceleration or blocking of the self-purification of biological treatments. In addition, surfactants can limit biological processes by inhibiting microorganisms that degrade organic matter. Objectives. The aim of the present study was to evaluate the treatment of refinery rejects loaded with phenols and detergents by coagulation flocculation using cactus pads (genus Opuntia) as a bio-flocculant and 30% iron(III) chloride (FeCl3) for surfactant and phenol removal. In addition, operating costs were evaluated for these pollution mitigation methods. Methods. The effectiveness of cactus pads as a bio-flocculant and 30% FeCl3 for surfactant and phenol removal were studied using a jar test. The study was conducted on vegetable oil refinery wastewater from a refinery company in Casablanca, Morocco. Results. The pollution load in wastewater varied widely from day to day. We evaluated the effect of cactus juice and 30% FeCl3 on high and low pollution loads. Opuntia pads showed a favorable potential for the treatment of low pollution load wastewater, with 78% and 90% of surfactant and phenol removed, respectively. However, the removal of high pollution load was less effective (42% and 41% removal of surfactant and phenol, respectively). The turbidity of low and high pollution load was reduced by 98.85% and 86%, respectively. The results demonstrate that 30% FeCl3 can effectively treat both low and high pollution loads (90% and 89% phenol removal, respectively, and 90% and 70% surfactant removal, respectively (optimal concentration 1.48 g/l). The turbidity was reduced by over 96% for both high and low pollutants. Conclusions. The results of the present study indicate that cactus as a natural flocculant and reject rich in FeCl3 could be effectively used for the low-cost effective treatment of crude vegetable oil refinery rejects. Competing Interests. The authors declare no competing financial interests

Publisher

Blacksmith Institute

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution

Reference38 articles.

1. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes;Un;J Environ Manag [Internet],2009

2. Study of refining wastewater pollution: case of vegetable oil refining industry Morocco;Chatoui;J Mater Environ Sci,2016

3. Low-cost adsorbents: growing approach to wastewater treatment—a review;Gupta;Crit Rev Environ Sci Technol [Internet],2009

4. Chitosan for coagulation/flocculation processes–an eco-friendly approach;Renault;Eur Polym J [Internet],2009

5. High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: kinetics, adsorption, mechanism and optimization studies;Dehghani;J Ind Eng Chem [Internet],2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3