Comparative analysis of a mining truck motor with permanent magnets in a rotor and a synchronous homopolar motor without magnets in a drive

Author:

Prakht Vladimir A.,Dmitrievskii Vladimir A.,Kazakbaev Vadim M.,Anuchin Aleksey S.

Abstract

The relevance. Increasing need for using mining trucks with a diesel-electric (hybrid) drive for development of minerals. Improving operational and cost characteristics of the electric drive of mining trucks helps to reduce costs in the development of minerals. The main aim. To compare theoretically the performance of synchronous traction motors of various designs (a conventional design with permanent magnets inside a rotor and a homopolar design without permanent magnets with an excitation winding on a stator), optimized by the same method, in the drive of a mining truck. To optimize the motor design to reduce power loss and required inverter power, as well as to limit torque ripple and reduce the risk of permanent magnet demagnetization. Objects. Design of twelve-pole nine-phase synchronous AC motors with a rated power of 370 kW of various designs: a homopolar motor without permanent magnets with an excitation winding on the stator and a motor of a traditional design with permanent magnets in the rotor. Methods. Derivative-free optimization method; equivalent circuit method; mathematical modeling; two-dimensional finite element method. Results. Based on the analysis, the advantages and disadvantages of the considered motors were revealed. The advantage of the motor with permanent magnets in the rotor is reduction in active part length by 30 %. The advantage of the homopolar motor with an excitation winding on the stator are 4.6 times lower cost of active materials. In addition, the homopolar motor has a more reliable design, without the risk of overheating, demagnetization or deterioration of the properties of permanent magnets over time

Publisher

National Research Tomsk Polytechnic University

Subject

Management, Monitoring, Policy and Law,Economic Geology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Fuel Technology,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3