Steel degassing in continuous steel melting units

Author:

Murashov Viacheslav A.,Strogonov Konstantin V.,Borisov Andrey A.,Lvov Dmitry D.

Abstract

The requirements for the quality of steel products dictate the need to increase the share of evacuated steel. In addition, the growing cost of fuel, as well as the desire of society and the state to decarbonize various industries, including ferrous metallurgy, requires companies to reduce fuel costs and switch to more modern and cleaner technologies. Reducing the specific fuel consumption, and, accordingly, emissions, is possible due to the transition to continuous production, minimizing the cost of heating the equipment and maintaining the set temperature in the degasser during technological downtime. The article deals with the issues of steel melt degassing in U-type continuous degassers in continuous steel making units. Aim. To consider the influence of rarefaction of a gas bubble on the characteristic size over the melt, speed and time of its surfacing in a U-type degassing unit. Based on the obtained dependences, to determine the characteristic size of a vacuum chamber and energy effect of switching to a continuous vacuumization. Methods.. Results. The authors have determined a bubble characteristic size in a steel melt under vacuum of different degrees. They studied the effect of vacuum on vacuumization speed and the degassing unit dimensions. The energy effect of switching to continuous vacuumization was determined. The proposed methodology is valid for liquid media, the calculations are presented on the example of molten steel. Based on the conducted calculations, the depression influence on molten steel vacuumization was determined. The vacuum chamber dimensions, comparable with RH-vacuum cleaners presented at the market of similar productivity and quality of finished products, as well as reducing energy consumption for steel degassing in a continuous vacuum degasser, compared with the existing circulating installation, were determined.

Publisher

National Research Tomsk Polytechnic University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3