Author:
Акчурин Руслан Зуфарович,Давлетшин Филюс Фанизович,Рамазанов Айрат Шайхуллинович,Шарафутдинов Рамиль Фаизырович
Abstract
Ссылка для цитирования:Тепловое поле в скважине при индукционном нагреве обсадной колонны в условиях низкой скорости потока / Р.З. Акчурин, Ф.Ф. Давлетшин, А.Ш. Рамазанов, Р.Ф. Шарафутдинов // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2023. – Т. 334. – № 2. – С. 87-98.
Актуальность. Одним из перспективных методов промыслово-геофизических исследований скважин является активная термометрия. Технология проведения исследований данным методом включает локальный индукционный нагрев металлической обсадной колонны, регистрацию и анализ изменения температуры в стволе скважины. В результате теплообмена с колонной в потоке жидкости, движущейся в скважине, создается тепловая метка, которая регистрируется температурными датчиками, расположенными в колонне по пути движения жидкости. Наблюдение за движением тепловых меток позволяет решать ряд важных практических задач, таких как определение объемного расхода флюида в стволе скважины, оценка дебита заколонного перетока. При низкой скорости потока разогрев колонны может привести к возникновению значительных градиентов температуры в жидкости, что обуславливает возникновение естественной тепловой конвекции. В этой связи актуальным является исследование тепловых процессов в скважине при индукционном нагреве с учетом естественной тепловой конвекции. Объект: добывающая скважина, в которой проводятся исследования методом активной термометрии с помощью локального индукционного нагрева обсадной колонны. Цель: исследование особенностей формирования температурного поля в скважине в процессе индукционного нагрева обсадной колонны с учетом естественной тепловой конвекции при малом расходе потока в колонне. Методы: численное моделирование в программном пакете Ansys Fluent (Лицензия ANSYS Academic Research CFD в рамках договора с Башкирским государственным университетом от 15.06.2020). Результаты. Установлено, что разогрев колонны и жидкости вблизи ее поверхности достигает около 12 и 5 К соответственно, что способствует увеличению локальной скорости жидкости за счет влияния естественной тепловой конвекции. Выше интервала нагрева в жидкости наблюдается повторяющаяся структура потока, соответствующая образованию конвекционных ячеек. Построены кривые динамики температуры жидкости во времени на различном радиальном расстоянии от стенки колонны и различной высоте относительно интервала нагрева, по времени прихода тепловой метки выполнена оценка линейной скорости потока жидкости. Установлено, что расчетная скорость жидкости, определяемая по скорости движения тепловой метки, возрастает на величину 6 % и более относительно скорости ламинарного восходящего потока в отсутствие влияния естественной тепловой конвекции. Показано, что измерение температуры в центральной части потока позволяет более точно оценить расход жидкости в колонне, поскольку в пристеночных областях локальная скорость жидкости возрастает за счет естественных конвективных потоков.
Publisher
National Research Tomsk Polytechnic University
Subject
Management, Monitoring, Policy and Law,Economic Geology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Fuel Technology,Materials Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献