THERMOPHYSICAL AND ENVIRONMENTAL ASSESSMENT OF NATURAL GAS UTILIZATION IN THE RECONSTRUCTION OF A PULVERIZED COAL-FIRED BOILER

Author:

Maltsev Kirill I.,Gil Andrey V.,Abramov Nikita V.,Puzyrev Stanislav A.

Abstract

Link for citation: Maltsev K.I., Gil A.V., Abramov N.V., Puzyrev S.A. Thermophysical and environmental assessment of natural gas utilization in the reconstruction of a pulverized coal-fired boiler. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2023, vol. 334, no. 8, рр. 30-38 In Rus. The relevance of the investigation is caused by the need to assess the completeness of fuel combustion, harmful emissions, and temperature stress of the screen surfaces of a pulverized coal-fired boiler during its reconstruction for natural gas combustion. Currently, the conversion of solid fuel combustion installations to natural gas is highly relevant due to significantly lower emissions of carbon compounds. The main aim of this research is to study the physicochemical processes in the combustion chamber at various loads with flammable natural gas combustion and evaluate the effectiveness of combustion organization during the reconstruction of a pulverized coal-fired boiler. Objects: combustion chamber of a boiler unit with a steam capacity of 210 t/h, burners, parameters of the combustion chamber environment Methods: comparison of results obtained from analytical thermal calculations and numerical modeling. The numerical simulation of gas flare combustion was performed using the ANSYS Fluent software package. Reynolds Averaged Navier–Stokes approaches based on averaging the Navier–Stokes equations over the Reynolds number with additional equations for the turbulent kinetic energy k and the rate of turbulent kinetic energy dissipation ε were applied to describe the turbulent flow. Results. A numerical study of the physicochemical processes in the combustion chamber of a boiler unit was conducted after its reconstruction for natural gas combustion. Dependencies of temperature level changes, hydrodynamics, and concentrations of combustion products components in the volume of the combustion chamber at various loads were obtained. It was found that high-temperature combustion products are redistributed towards the front and rear walls, resulting in the formation of zones in the wall layer with a significant temperature gradient. The nozzles of the tertiary air contribute to the reduction of nitrogen oxide emissions in the combustion chamber by suppressing their formation due to oxygen deficiency in the combustion zone, as well as by lowering the temperature of the flame in the oxidizing zone.

Publisher

National Research Tomsk Polytechnic University

Subject

Management, Monitoring, Policy and Law,Economic Geology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Fuel Technology,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3