Affiliation:
1. University of Messina
2. Aligarh Muslim University
Abstract
Let $R$ be a prime ring, $Q_r$ its right Martindale quotient ring, $L$ a non-central Lie ideal of $R$, $n\geq 1$ a fixed integer, $F$ and $G$ two generalized skew derivations of $R$ with the same associated automorphism, $p\in R$ a fixed element. If $p\bigl(F(x)F(y)-G(y)x\bigr)^n=0$, for any $x,y \in L$, then there exist $a,c\in Q_r$ such that $F(x)=ax$ and $G(x)=cx$, for any $x\in R$, with $pa=pc=0$, unless when $R$ satisfies the standard polynomial identity $s_4(x_1,\ldots,x_4)$.
Publisher
The International Electronic Journal of Algebra
Subject
Algebra and Number Theory
Reference20 articles.
1. J.-C. Chang, Annihilators of power values of a right generalized $(\alpha,\beta)$-derivation, Bull. Inst. Math. Acad. Sin., 4 (2009), 67-73.
2. J.-C. Chang, Generalized skew derivations with nilpotent values on Lie ideals, Monatsh. Math., 161 (2010), 155-160.
3. C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
4. C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra, 149 (1992), 371-404.
5. C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 130-171.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献