Affiliation:
1. Thiruvalluvar University
2. Mepco Schlenk Engineering College
3. University of Neyshabur
4. Kosar University of Bojnord
Abstract
Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity.
Publisher
The International Electronic Journal of Algebra
Subject
Algebra and Number Theory