Abstract
Let $X$ be a magma, that is a set equipped with a
binary operation, and consider a function
$\alpha : X \to X$. We say that $X$ is
Hom-associative if, for all $x,y,z \in X$, the equality
$\alpha(x)(yz) = (xy) \alpha(z)$
holds. For every isomorphism
\linebreak
class of magmas of order two, we
determine all functions $\alpha$ making $X$
\linebreak
Hom-associative.
Furthermore, we find all such $\alpha$ that are
endomorphisms of $X$. We also consider versions
of these results where the binary operation
\linebreak
on $X$ and the function $\alpha$ only are partially defined.
We use our findings to
\linebreak
construct numerous examples of two-dimensional
Hom-associative as well as multiplicative magma algebras.
Publisher
The International Electronic Journal of Algebra
Reference13 articles.
1. I. Basdouri, S. Chouaibi, A. Makhlouf and E. Peyghan,
Free Hom-groups, Hom-rings and semisimple modules,
arXiv:2101.03333v1 [math.RA] (2021).
2. R. H. Bruck, A Survey of Binary Systems,
Springer-Verlag, 1958.
3. N. Bourbaki,
Elements of Mathematics, Algebra I, Chapters 1-3,
Springer-Verlag, 1989.
4. M. Goze and E. Remm,
On the algebraic variety of Hom-Lie algebras,
arXiv:1706.02484v1 [math.RA] (2017).
5. J. T. Hartwig, D. Larsson and S. D. Silvestrov,
Deformations of Lie algebras using $\sigma$-derivations,
J. Algebra, 295(2) (2006), 314-361.