Affiliation:
1. Chulalongkorn University
Abstract
In this paper, we introduce the notion of $S$-$M$-cyclic submodules, which is a generalization of the notion of $M$-cyclic submodules. Let $M, N$ be right $R$-modules and $S$ be a
multiplicatively closed subset of a ring $R$. A submodule $A$ of $N$ is said to be an $S$-$M$-cyclic submodule, if there exist $s\in S$ and $f \in Hom_R(M,N)$ such that $As \subseteq f(M) \subseteq A$. Besides giving many properties of $S$-$M$-cyclic submodules, we generalize some results on $M$-cyclic submodules to $S$-$M$-cyclic submodules. Furthermore, we generalize some properties of principally injective modules and pseudo-principally injective modules to $S$-principally injective modules and $S$-pseudo-principally injective modules, respectively. We study the transfer of this notion to various contexts of these modules.
Publisher
The International Electronic Journal of Algebra
Reference17 articles.
1. D. D. Anderson, T. Arabaci, U. Tekir and S. Koc, On S-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
2. A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
3. S. Baupradist and S. Asawasamrit, On fully-M-cyclic modules, J. Math. Res., 3(2) (2011), 23-26.
4. S. Baupradist and S. Asawasamrit, GW-principally injective modules and pseudo-GW-principally injective modules, Southeast Asian Bull. Math., 42 (2018), 521-529.
5. S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math., 35(1) (2011), 21-27.