Affiliation:
1. Vietnam National University
Abstract
The aim of this paper is to show that if $\mathbb{H}$ is the real quaternion division ring and $n$ is an integer greater than $1,$ then every matrix in the special linear group $\mathrm{SL}_n(\mathbb{H})$ can be expressed as a product of at most three commutators of unipotent matrices of index $2$.
Publisher
The International Electronic Journal of Algebra
Reference26 articles.
1. M. H. Bien, T. H. Dung and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra, 71 (2023), 1948-1956.
2. M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl., 646 (2022), 119-131.
3. M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl., 679 (2023), 305-326.
4. M. H. Bien, T. N. Son, P. T. T. Thuy and L. Q. Truong, Products of unipotent matrices of index 2 over division rings, Submitted.
5. E. W. Ellers and J. Malzan, Products of reflections in GL(n;H), Linear Multilinear Algebra, 20(4) (1987), 281-324.