Affiliation:
1. Indian Institute of Technology Patna
2. Government Polytechnic Kishanganj
Abstract
This paper presents three different conditions for the additivity of a map on a triangular ring $\mathcal{T}$. First, we prove a map $\delta$ on $\mathcal{T}$ satisfying
$\delta(a_1b_1+b_1a_1)=\delta(a_1)b_1 +a_1 \tau(b_1)+\delta(b_1)a_1 + b_1\tau(a_1)$
for all $a_1,b_1\in \mathcal{T}$ and for some maps $\tau$ over $\mathcal{T}$ satisfying
$\tau(a_1b_1+b_1a_1)=\tau(a_1)b_1+a_1 \tau(b_1)+\tau(b_1)a_1+b_1\tau(a_1)$,
is additive. Secondly, it is shown that a map $T$ on $\mathcal{T}$ satisfying
$T(a_1b_1)=T(a_1)b_1=a_1T(b_1)$
for all $a_1,b_1\in \mathcal{T}$ is additive. Finally, we show that if a map $D$ over $\mathcal{T}$ satisfies
$(m+n)D(a_1b_1)=2mD(a_1)b_1+2na_1D(b_1)$
for all $a_1,b_1\in \mathcal{T}$ and integers $m,n\geq 1$, then $D$ is additive.
Publisher
The International Electronic Journal of Algebra
Reference15 articles.
1. S. Ali and A. Fosner, On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings, Algebra Colloq., 21(3) (2014), 411-420.
2. S. Aziz, A. Ghosh and O. Prakash, Additivity of multiplicative (generalized) skew semi-derivations on rings, Georgian Math. J., (2023), doi.org/10.1515/gmj-2023-2100.
3. M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci., 14(3) (1991), 615-618.
4. M. S. T. El-Sayiad, M. N. Daif and V. D. Filippis, Multiplicativity of left centralizers forcing additivity, Bol. Soc. Parana. Mat. (3), 32(1) (2014), 61-69.
5. B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebr., {23}(2) (2014), 1-14.