An Improved K-Power Means Technique Using Minkowski Distance Metric and Dimension Weights for Clustering Wireless Multipaths in Indoor Channel Scenarios

Author:

Materum Lawrence1,Teologo Jr. Antipas T.1

Affiliation:

1. Department of Electronics and Communications Engineering, De La Salle University, Philippines

Abstract

Wireless multipath clustering is an important area in channel modeling, and an accurate channel model can lead to a reliable wireless environment. Finding the best technique in clustering wireless multipath is still challenging due to the radio channels’ time-variant characteristics. Several clustering techniques have been developed that offer an improved performance but only consider one or two parameters of the multipath components. This study improved the K-PowerMeans technique by incorporating weights or loads based on the principal component analysis and utilizing the Minkowski distance metric to replace the Euclidean distance. K-PowerMeans is one of the several methods in clustering wireless propagation multipaths and has been widely studied. This improved clustering technique was applied to the indoor datasets generated from the COST 2100 channel Model and considered the multipath components’ angular domains and their delay. The Jaccard index was used to determine the new method’s accuracy performance. The results showed a significant improvement in the clustering of the developed algorithm than the standard K-PowerMeans.

Publisher

UUM Press, Universiti Utara Malaysia

Subject

General Mathematics,General Computer Science

Reference128 articles.

1. Blanza, J., Teologo, A., & Materum, L. (2019, August). Datasets

2. for mutipath clustering at 285 MHz and 5.3 GHz bands

3. based on COST 2100 MIMO channel model. In 2019

4. International Symposium on Multimedia and Communication

5. Technology (ISMAC) (pp. 1–5). IEEE. https://doi.org/10.1109/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3