COMPARATIVE PERFORMANCE EVALUATION OF EFFICIENCY FOR HIGH DIMENSIONAL CLASSIFICATION METHODS

Author:

Okwonu Friday Zinzendoff1,Ahad Nor Aishah2,Ogini Nicholas Oluwole3,Okoloko Innocent Ejiro4,Wan Husin Wan Zakiyatussariroh5

Affiliation:

1. Department of Mathematics, Faculty of Science, Delta State University, Nigeria

2. School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, Malaysia

3. Department of Computer Science, Delta State University, Nigeria

4. Faculty of Computing, Dennis Osadebay University, Nigeria

5. Faculty of Computer and Mathematical Science, Universiti Teknologi MARA, Kelantan Branch, Malaysia

Abstract

This paper aimed to determine the efficiency of classifiers for high-dimensional classification methods. It also investigated whether an extreme minimum misclassification rate translates into robust efficiency. To ensure an acceptable procedure, a benchmark evaluation threshold (BETH) was proposed as a metric to analyze the comparative performance for high-dimensional classification methods. A simplified performance metric was derived to show the efficiency of different classification methods. To achieve the objectives, the existing probability of correct classification (PCC) or classification accuracy reported in five different articles was used to generate the BETH value. Then, a comparative analysis was performed between the application of BETH value and the well-established PCC value ,derived from the confusion matrix. The analysis indicated that the BETH procedure had a minimum misclassification rate, unlike the Optimal method. The results also revealed that as the PCC inclined toward unity value, the misclassification rate between the two methods (BETH and PCC) became extremely irrelevant. The study revealed that the BETH method was invariant to the performance established by the classifiers using the PCC criterion but demonstrated more relevant aspects of robustness and minimum misclassification rate as compared to the PCC method. In addition, the comparative analysis affirmed that the BETH method exhibited more robust efficiency than the Optimal method. The study concluded that a minimum misclassification rate yields robust performance efficiency.

Publisher

UUM Press, Universiti Utara Malaysia

Subject

General Mathematics,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3