Does the Physical Type of House Still Affect Household Poverty in Indonesia? An Entropy-based Fuzzy Weighted Logistic Regression Approach

Author:

Harumeka Ajiwasesa1,Purwa Taly2

Affiliation:

1. Central Bureau of Statistics, East Java Province, Indonesia

2. Central Bureau of Statistics, Bali Province, Indonesia

Abstract

Poverty is one of the biggest challenges facing the world nowadays. Numerous studies have concentrated on the characteristics that determine poverty to identify poor households. One of the most important factors is the physical type of the house. The physical type of houses includes floor type, wall type, roof type, and floor area per inhabitant in Indonesia, especially Surabaya, one of Indonesia’s big cities and the capital of East Java Province. This factor gave promising results to the country. Therefore, it was assumed that these variables could no longer distinguish between those in wealth and those in poverty. Poor household data are one example of imbalanced data in terms of classification, which is a concern. The Rare Event Weighted Logistic Regression (RE-WLR) and Entropy-based Fuzzy Weighted Logistic Regression (EFWLR) methods were utilised to overcome these problems. As a result, the only factor, including the physical design of a house, which had a substantial impact on the likelihood that a household would be classified as poor, was the floor area per capita. The other three variables were not statistically significant, namely floor type, wall type, and roof type. In addition, the elimination of the physical type of house would reduce the Area Under the Curve of the RE-WLR and EFWLR methods by 6.78 percent and 6.85 percent, respectively.

Publisher

UUM Press, Universiti Utara Malaysia

Subject

General Mathematics,General Computer Science,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3