Affiliation:
1. Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang, Malaysia
Abstract
Flower Pollination Algorithm (FPA) is a relatively new meta-heuristic algorithm that adopts its metaphor from the proliferation role of flowers in plants. Having only one parameter control (i.e. the switch probability, pa) to choose from the global search (i.e. exploration) and local search (i.e. exploitation) is the main strength of FPA as compared to other meta-heuristic algorithms. However, FPA still suffers from variability of its performance as there is no one size that fits all values for pa, depending on the characteristics of the optimisation function. This paper proposed flower pollination algorithm metropolis-hastings (FPA-MH) based on the adoption of Metropolis-Hastings criteria adopted from the Simulated Annealing (SA) algorithm to enable dynamic selection of the pa probability. Adopting the problem of t-way test suite generation as the case study and with the comparative evaluation with the original FPA, FPA-MH gave promising results owing to its dynamic and adaptive selection of search operators based on the need of the current search.
Publisher
UUM Press, Universiti Utara Malaysia
Subject
General Mathematics,General Computer Science
Reference34 articles.
1. Abdel-Baset, M., & Hezam, I. M. (2015). An effective hybrid flower pollination and genetic algorithm for constrained optimization problems. Advanced Engineering Technology and Application An International Journal, 4, 27-27. https://doi.org/10.12785/aeta/040203
2. A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles;Abdel-Raouf;International Journal of Modern Education and Computer Science 6(3) 38 https,2014
3. and Software Technology, 66, 13-29. https://doi.org/10.1016/j. infsof.2015.05.005
4. Ahmed, B. S., & Zamli, K. Z. (2011). A variable-strength interaction test suites generation strategy using particle swarm optimization. Journal of Systems and Software, 84(12), 2171-2185. https://doi.org/10.1016/j. jss.2011.06.004
5. Multiple black hole inspired meta-heuristic searching optimization for combinatorial testing;Al-Sammarraie;IEEE Access,2020