Low rank approximation of positive semi-definite symmetric matrices using Gaussian elimination and volume sampling

Author:

Hegland Markus,De Hoog FrankORCID

Abstract

Positive semi-definite matrices commonly occur as normal matrices of least squares problems in statistics or as kernel matrices in machine learning and approximation theory. They are typically large and dense. Thus algorithms to solve systems with such a matrix can be very costly. A core idea to reduce computational complexity is to approximate the matrix by one with a low rank. The optimal and well understood choice is based on the eigenvalue decomposition of the matrix. Unfortunately, this is computationally very expensive. Cheaper methods are based on Gaussian elimination but they require pivoting. We show how invariant matrix theory provides explicit error formulas for an averaged error based on volume sampling. The formula leads to ratios of elementary symmetric polynomials on the eigenvalues. We discuss several bounds for the expected norm of the approximation error and include examples where this expected error norm can be computed exactly. References A. Dax. “On extremum properties of orthogonal quotients matrices”. In: Lin. Alg. Appl. 432.5 (2010), pp. 1234–1257. doi: 10.1016/j.laa.2009.10.034. M. Dereziński and M. W. Mahoney. Determinantal Point Processes in Randomized Numerical Linear Algebra. 2020. url: https://arxiv.org/abs/2005.03185. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. “Matrix approximation and projective clustering via volume sampling”. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm. SODA ’06. Miami, Florida: Society for Industrial and Applied Mathematics, 2006, pp. 1117–1126. url: https://dl.acm.org/doi/abs/10.5555/1109557.1109681. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. “A theory of pseudoskeleton approximations”. In: Lin. Alg. Appl. 261.1 (1997), pp. 1–21. doi: 10.1016/S0024-3795(96)00301-1. M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved data analysis”. In: Proc. Nat. Acad. Sci. 106.3 (Jan. 20, 2009), pp. 697–702. doi: 10.1073/pnas.0803205106. M. Marcus and L. Lopes. “Inequalities for symmetric functions and Hermitian matrices”. In: Can. J. Math. 9 (1957), pp. 305–312. doi: 10.4153/CJM-1957-037-9.

Publisher

Australian Mathematical Publishing Association, Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on error bounds for pseudo skeleton approximations of matrices;Linear Algebra and its Applications;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3