Abstract
Positive semi-definite matrices commonly occur as normal matrices of least squares problems in statistics or as kernel matrices in machine learning and approximation theory. They are typically large and dense. Thus algorithms to solve systems with such a matrix can be very costly. A core idea to reduce computational complexity is to approximate the matrix by one with a low rank. The optimal and well understood choice is based on the eigenvalue decomposition of the matrix. Unfortunately, this is computationally very expensive. Cheaper methods are based on Gaussian elimination but they require pivoting. We show how invariant matrix theory provides explicit error formulas for an averaged error based on volume sampling. The formula leads to ratios of elementary symmetric polynomials on the eigenvalues. We discuss several bounds for the expected norm of the approximation error and include examples where this expected error norm can be computed exactly.
References
A. Dax. “On extremum properties of orthogonal quotients matrices”. In: Lin. Alg. Appl. 432.5 (2010), pp. 1234–1257. doi: 10.1016/j.laa.2009.10.034.
M. Dereziński and M. W. Mahoney. Determinantal Point Processes in Randomized Numerical Linear Algebra. 2020. url: https://arxiv.org/abs/2005.03185.
A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. “Matrix approximation and projective clustering via volume sampling”. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm. SODA ’06. Miami, Florida: Society for Industrial and Applied Mathematics, 2006, pp. 1117–1126. url: https://dl.acm.org/doi/abs/10.5555/1109557.1109681.
S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. “A theory of pseudoskeleton approximations”. In: Lin. Alg. Appl. 261.1 (1997), pp. 1–21. doi: 10.1016/S0024-3795(96)00301-1.
M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved data analysis”. In: Proc. Nat. Acad. Sci. 106.3 (Jan. 20, 2009), pp. 697–702. doi: 10.1073/pnas.0803205106.
M. Marcus and L. Lopes. “Inequalities for symmetric functions and Hermitian matrices”. In: Can. J. Math. 9 (1957), pp. 305–312. doi: 10.4153/CJM-1957-037-9.
Publisher
Australian Mathematical Publishing Association, Inc.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献