Free Radical Scavenging Activity Evaluation of Hydrazones by Quantitative Structure Activity Relationship

Author:

Alisi Ikechukwu Ogadimma,Uzairu Adamu,Abechi Stephen Eyije,Idris Sulaiman Ola

Abstract

The 2, 2-diphenyl-1-picrylhydrazyl (<strong>DPPH</strong>) free radical scavenging properties of selected hydrazone antioxidants was investigated by the application of Quantitative Structure Activity Relationship (<strong>QSAR</strong>). Density functional theory (<strong>DFT</strong>) was employed in the optimization of the molecular structures. Internal and external validation as well as y-randomization tests were conducted in order to confirm the statistical reliability and acceptability of the developed models. The leverage approach was employed in the assessment of the applicability domain of the developed model. While the relative contribution and strength of each descriptor in the model was obtained by estimating the variation inflation factor, mean effect, and degree of contribution of each descriptor in the developed model. Model 3 which gave the best validation results was chosen as the best of the five models. This model dictates that the most important descriptors that influence the free radical scavenging activities of  the hydrazone antioxidants are the Broto-Moreau autocorrelation - lag 2 / weighted by polarizabilities; Count of atom-type H E-State: H on C  bonded to saturated C; Number of hydrogen bond donors (using CDK H Bond Donor Count Descriptor algorithm); Structural information content index (neighborhood symmetry of 1-order) and the 3D topological distance based autocorrelation - lag 7 / weighted by I-state descriptors. The Structural information content index descriptor was observed to be the most influential of all the descriptors

Publisher

Sociedad Quimica de Mexico, A.C.

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3