Application of Molecular Mass Spectrometry for The Structural Characterization of a DNA-Protein Cross-Links

Author:

Gong Jiawei,Solivio Morwena Jane,Merino Edward J,Landero Figueroa Julio Alberto

Abstract

<p>To date, many different analytical methods have been used to investigate the cross-linking reaction mechanism and to obtain the chemical structure of DNA-Protein Cross-links (DPCs). Direct MS analysis of DPCs is challenging because of the ionization properties of DNA and the protein. However, peptide sequencing and mass spectrometry (MS) as analytical techniques are playing increasingly important roles for the structure determination of DPCs model. In our previous study, a novel approach was presented for purification, detection and quantification of DPCs by newly developed inductively coupled plasma mass spectrometry (ICPMS/MS), which allows sub-ppb detection of S and P, key heteroelements in DNA and proteins.</p><p>In this study, we enhanced our previously developed method and it was complemented by the use of molecular MS to allow complete characterization of a DNA-protein cross-link.  First, a small molecule model is utilized to identify the adduct structure that will likely occur in an intact DNA-protein cross-link.  We investigate the thermal stability of DNA-protein cross-links, both in an intact DPC and a small molecule adduct to determine feasibility of digestion/thermal degradationof DNA without the cross-link information being lost.  Thermal degradation was conducted to reduce the cross-linked DNA into a single nucleoside. The remaining protein-nucleoside adduct then was proteolytically digested, generating a peptide-nucleoside adduct. The absence of the phosphate moiety allows for facile structural characterization <em>via</em> electrospray ionization mass spectrometry (ESI-MS).  Additional calculations were done for peptide matching allowing us to determine the cross-link location in the protein, made possible <em>via</em> MS/MS analysis.  Additionally, we show that steric effects play an important role in DPC formation.</p>

Publisher

Sociedad Quimica de Mexico, A.C.

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3