Abstract
Many drug studies have been conducted against the coronavirus disease, which has affected the whole world since December 2019, and some studies have been carried out on natural treatment methods. Many ideas for curing coronavirus disease of T. vulgaris known as thyme plant have been presented, although there are gaps in the literature on the subject. In this work, the anti-severe acute respiratory syndrome coronavirus 2 potential of the major compounds of the T. vulgaris plant’s essential oil was investigated in silico. The major components of the T. vulgaris plant's essential oil are thymol and carvacrol. Using molecular docking experiments, we evaluated the effects of thymol and carvacrol in thyme essential oil on Omicron variant spike protein and main protease enzyme (Mpro) of severe acute respiratory syndrome coronavirus 2. We also used online databases to investigate the adsorption, distribution, metabolism, absorption, and toxic (ADMET) aspects of these two compounds. It was determined that thymol and carvacrol have strong binding affinity to the spike protein of the Omicron variant and the main protease enzyme. The compounds interact with target proteins through electrostatic, hydrogen bonds, and hydrophobic interactions. More promising findings are obtained when the contacts of carvacrol with target proteins are assessed in terms of the structure-activity relationship.
Publisher
Karadeniz Fen Bilimleri Dergisi
Reference19 articles.
1. Alp, M & Alp, A.S. (2019). Medisinal Kimyaya Kısa Bir Giriş (1st ed.). Akademisyen Kitabevi.
2. Amirghofran, Z., Ahmadi, H., Karimi, M. H. (2012). Immunomodulatory Activity of the Water Extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on Dendritic Cells and T Cells Responses. Journal of Immunoassay and Immunochemistry, 33(4), 388–402. https://doi.org/10.1080/15321819.2012.655822.
3. Banerjee, P., Eckert, A. O., Schrey, A. K., Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46, W257–W263. https://doi.org/10.1093/nar/gky318.
4. Bank, R. P. D. RCSB PDB - 7T9J: Cryo-EM structure of the SARS-CoV-2 Omicron spike protein. Retrieved July 25, 2022, from https://www.rcsb.org/structure/7T9J.
5. BIOVIA, Dassault Systèmes, (2021). BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes,