Comparison of Artificial Neural Networks with other Machine Learning Methods in Foot Movement Classification

Author:

AYDIN FANDAKLI Selin1ORCID,OKUMUŞ Halil2ORCID

Affiliation:

1. KARADENİZ TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

2. KARADENİZ TEKNİK ÜNİVERSİTESİ

Abstract

Modern prostheses can be controlled by using gait analysis data from Inertial Measurement Units compared to traditional prostheses. This article aims to classify foot movements for the robotic ankle system in lower limb prostheses to recognize motion intent and adapt to abnormal walking conditions. The statistical features are extracted from IMU data from 11 volunteers aged 20-34 and then the features are classified using machine learning. In this study, the classification accuracies of Naïve Bayes Classifier, Linear Discriminant Analysis, K-Nearest Neighbour Classifier and Support Vector Machines and Artificial Neural Networks in classifying foot movements are examined separately for the raw data and the processed data such as Euler angles and quaternions which estimate with Madwick Filter. Gait analysis data were obtained by using the Inemo inertial module LSM9DS1 work on an NRF52 including 9 DOF, triaxial gyroscope, triaxial accelerometer, and triaxial magnetometer in the Biomechanics Laboratory of the Department of Mechanical Engineering, Middle East Technical University from eleven subjects and achieved an highest classification accuracy rate of 90.9% on test data, 97.3% for training data.

Publisher

Karadeniz Fen Bilimleri Dergisi

Reference32 articles.

1. Hoile, R. (1996). Amputation: Surgical Practice and Patient Management. British Medical Journal, 312(7036), 984-985.

2. Kerr, M., Barron, E., Chadwick, P., Evans, T., Kong, W. M., Rayman, G., Jeffcoate, W. J. (2019). The cost of diabetic foot ulcers and amputations to the National Health Service in England. Diabetic Medicine, 36(8): 995-1002.

3. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. In: IEEE Trans. Inf. Technol. Biomed., 119-128.

4. Seel, T., Raisch, J., Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 6891-6909.

5. Haoyu, L, Derrode, S., Pieczynski, W. (2019). An adaptive and on-line IMU-based locomotion activity classification method using a triplet Markov model, Neurocomputing, 362, pp. 94-105.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3