Prediction of Coronary Artery Disease from Iris Images Using Local Binary Patterns and Artificial Neural Network

Author:

ÖZBİLGİN Ferdi1ORCID,KURNAZ Çetin2ORCID

Affiliation:

1. GİRESUN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

2. ONDOKUZ MAYIS ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Koroner Arter Hastalığı (KAH), kalp kasını besleyen koroner arterlerin daralması veya tıkanması sonucunda oluşan bir kalp hastalığıdır. Dünya genelinde mortalite oranı yüksek bir sağlık sorunu olan KAH’ın erken tanısı çok önemlidir. Bu çalışmada, iridoloji ve görüntü işleme tekniklerinin kullanılarak KAH’ın tahmin edilmesi amaçlanmıştır. Mevcut çalışmalardan farklı olarak iridoloji ile birlikte gerçekleştirilen kalp hastalıkları tahmini çalışmalarında kullanılmamış Yerel İkili Örüntüler (YİÖ) öznitelik çıkarma yönteminin başarımı analiz edilmiştir. Önerilen yöntemde 94 KAH ve 104 Kontrol grubu olmak üzere toplamda 198 gönüllüye ait iris görüntülerinden YİÖ ile öznitelikler çıkarılmış ve Yapay Sinir Ağı (YSA) kullanılarak sınıflandırma gerçekleştirilmiştir. Görüntü içerisinden iris konumlarını bulmak için İntegral Diferansiyel Operatörü ve irisi dikdörtgen formata dönüştürmek için Rubber Sheet Normalizasyon yöntemleri kullanılmıştır. İridoloji haritası vasıtasıyla iriste yer alan kalp bölgesi analiz bölgesi olarak belirlenmiş ve bu bölgeden bir piksel ve sekiz komşulukla YİÖ ile 59 adet histogram temelli öznitelikler çıkarılmıştır. Çıkarılan özniteliklerin YSA ile sınıflandırması gerçekleştirilmiştir. Eğitim ve test olarak iki gruba ayrılan verilerde eğitim işlemi Ölçeklendirilmiş Konjuge Gradyan (Scaled Conjugate Gradient, SCG) algoritması ile gerçekleştirilmiştir. Performans ölçütü olarak belirlenen doğruluk, kesinlik, duyarlılık, özgüllük, F1 skor ve Eğri Altında Kalan Alan (Area Under the Curve, AUC) değerleri test verileri için sırasıyla %91,5, 0,9063, 0,9355, 0,8929, 0,92063 ve 0,9103 olarak bulunmuştur. Elde edilen bulgular doğrultusunda YİÖ temelli önerilen yöntemin KAH’ın tahmin edilmesinde başarılı olduğu söylenebilir.

Publisher

Karadeniz Fen Bilimleri Dergisi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3